
Superdiffusion in a honeycomb billiard

Michael Schmiedeberg and Holger Stark
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

and Max-Planck-Institute for Dynamics and Self-Organization, D-37073 Göttingen, Germany
�Received 19 December 2005; published 24 March 2006�

We investigate particle transport in the honeycomb billiard which consists of connected channels placed on
the edges of a honeycomb structure. The spreading of particles is superdiffusive due to the existence of ballistic
trajectories which we term perfect paths. Simulations give a time exponent of 1.72 for the mean-square
displacement and a starlike, i.e., anisotropic, particle distribution. We present an analytical treatment based on
the formalism of continuous-time random walks and explain the anisotropic distribution under the assumption
that the perfect paths follow the directions of the six lattice axes. Furthermore, we derive a relation between the
time exponent and the exponent of the distribution function for trajectories close to a perfect path. In billiards
with randomly distributed channels, conventional diffusion is always observed in the long-time limit, although
for small disorder transient superdiffusional behavior exists. Our simulation results are again supported by an
analytical analysis.
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I. INTRODUCTION

Billiard systems, i.e., point particles moving freely in ar-
eas bounded by closed curves from which they reflect specu-
larly, are a paradigm of classical mechanics illustrating the
difference between regular and chaotic motion �1–3�. More-
over, they are helpful to explore the relation between classi-
cal and quantum mechanics �4�, where interference of waves
becomes important as also observed in optical resonators �5�
or by chaotic scattering in optical billiards �6�.

In this paper we investigate a special example of the so-
called infinite domain or extended billiard, where particle
motion is unrestricted. The most famous example invented
by Lorentz �7� to model electrons in a metal is the Lorentz
gas, where particles reflect specularly from randomly distrib-
uted spherical scatterers. A periodic version, the so-called
Sinai billiard �8�, is illustrated in Fig. 1�a�. For special paths,
the particles possess an infinite horizon, i.e., they move
straight without being scattered �see Fig. 1�a��. These paths
are responsible for the observation that a collection of par-
ticles with arbitrary initial direction experience superdiffu-
sion, i.e., in the Sinai billiard their mean-square displacement
grows as t ln t, where t denotes time �9�. If sufficiently large
scatterers are placed on a hexagonal lattice �10� �see Fig.
1�b�� or if small scatterers fill the interstitial space of the
Sinai billiard in Fig. 1�a� �11�, particles always have a finite
horizon and their motion is purely diffusive.

Recently, transport properties in one-dimensional ex-
tended billiards have been studied �11–14� also with special
emphasis on heat conduction �15,16�. One example, a peri-
odic arrangement of channels �see Ref. �12��, is pictured in
Fig. 1�c�. Although all particles in such a channel billiard
have a finite horizon, there exist paths illustrated in Fig. 1�c�
and termed perfect paths in the following, where the particles
always move ballistically in one direction and therefore can
cause superdiffusion �17�.

In this paper, we study a two-dimensional extended bil-
liard, where channels are placed on the edges of the honey-
comb structure, and denote it a honeycomb billiard �see

Fig. 2�. The spreading of particles in such a billiard is also
superdiffusive due to the existence of numerous ballistic or
perfect paths, examples of which are illustrated in Fig. 2.
Note that path 3 is equivalent to the one in the one-
dimensional billiard of Fig. 1�c�. Our system is an example
where particles perform a Lévy walk �20–22�. Very long ef-
fective steps along almost perfect paths lead to superdiffu-
sion. We study it with the help of computer simulations and
motivate the time exponent for the particles’ mean-square
displacement within the velocity model �23� of continuous-
time random walks �21,22�. We furthermore look at random
distortions of the honeycomb billiard and show that for small
distortions a transient superdiffusive regime exists whereas
for large times and also for large distortions the spreading of
the particles is always diffusive. Our numerical results are
again supported by an analytical analysis.

Originally, our work was motivated by the observation of
photon channelling in foams �18,19�. Light in foams is re-
flected at the liquid-gas interface of the thin films which
ultimately leads to a diffusive transport of photons through
the system. Experiments and theoretical considerations show

FIG. 1. �a� Ballistic paths in a Sinai billiard, where particles
experience an infinite horizon, give rise to superdiffusion. �b� If the
scatterers on hexagonal lattice points are sufficiently large, the par-
ticle trajectories always have a finite horizon and the spreading of
particles is diffusive. �c� A one-dimensional channel billiard with a
perfect path giving rise to superdiffusion.
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that the photons have a higher probability to move in the
liquid phase of the films, a phenomenon that was then termed
photon channeling. The channel billiards studied here are an
extreme case where the photons always move in the liquid
phase.

Finally, we add a note concerning the classification of our
billiard system. Arnol’d’s famous theorem states that the
phase space of integrable systems in classical mechanics is a
torus for each trajectory �24�. On the other hand, the Lorentz
gas is chaotic and therefore nonintegrable �4�. Besides quasi-
integrable systems �2�, Richens and Berry identify pseudoin-
tegrable systems with chaotic properties whose phase space
is a multihandled sphere instead of a torus �25�. As an ex-
ample, they investigate a system similar to the honeycomb
billiard but with the hexagons replaced by squares and show
that the corresponding phase space is a five-handled sphere
�25�. Performing an analogous investigation for the honey-
comb billiard, we find a ten-handled sphere as phase space
�26�.

In the following, we introduce details of our billiard sys-
tem and the method of simulations. In Sec. III we report our
numerical results, discuss analytical approaches in Sec. IV,
and then end with conclusions. The Appendix contains de-
tails of the Lévy-walk model for the honeycomb billiard.

II. MODEL SYSTEM AND METHOD
OF SIMULATIONS

The objective of this paper is to study the dynamics of
particles in two-dimensional channel billiards. The construc-
tion of the regular honeycomb billiard, as illustrated in Fig.
2, is obvious. However, we also want to investigate random
channel billiards. To create them, we employ Voronoi tessel-
lations of the plane �28,29�. They are generated from a dis-
tribution of seed points in a simulation box, for which
Voronoi polygons are constructed in complete analogy to the
Wigner-Seitz cells of periodically arranged lattice sites. For
example, a triangular lattice of seed points gives the regular
honeycomb structure whose edges we choose to have the
length l0. In the following all lengths are given in units of l0.
Then we systematically introduce disorder by shifting the
seed points along a randomly chosen displacement vector
whose magnitude is equally distributed in the intervall

�0,�r�. All of our Voronoi tessellations are produced by the
software TRIANGLE �30�; examples are presented, e.g., in
Ref. �31�. Typically, they contain approximately 15 000 cells,
which corresponds to a quadratic simulation box with edge
length 200l0. This simulation box is extended in all spatial
directions by periodic boundary conditions.

Now, we arrive at a random channel billiard by placing a
channel of width d on each edge of the Voronoi tessellation.
Only modest disorder quantified by �r�0.3 is investigated
so that all cells still have six edges. This avoids the situation
that four instead of three channels meet when we construct
the billiard system, which simplifies the determination of the
particle path. Particles perform a ballistic motion with a con-
stant velocity c inside the channels; when they hit the bound-
ary they are reflected specularly. In the following, we use the
time scale l0 /c to rescale time.

Typically, we launch 10 000 particles at one vertex of the
underlying Voronoi tesselation in an angular range of 60°
and let them run during a time t=105. At several times, we
calculate the mean-square displacement �r2�, where r de-
notes the position vector of the particles in the particle cloud,
and plot it as a function of t. When applicable, diffusion
constants in units of l0c are then determined from a fit to
�r2�=4Dt.

III. SUPERDIFFUSION: RESULTS FROM SIMULATIONS

In this section we present our numerical results for the
exact honeycomb billiard and the random channel billiard.
Figure 3, where we plot the mean-square displacement as a
function of time for different �r, summarizes our main re-
sults. In the exact honeycomb billiard ��r=0, plus symbols�,
the particles exhibit superdiffusion, i.e., in �r2�� t� the time
exponent is larger than 1 and assumes the value �
=1.72±0.02. Within the numerical error, the exponent is in-
dependent of the channel width d as long as d is small
enough so that the particle’s horizon is finite. Nevertheless,
even for a finite horizon, we find ballistic trajectories, termed

FIG. 2. Honeycomb billiard with three examples of perfect
paths.

FIG. 3. Mean-square displacement as a function of time for the
perfect honeycomb billiard, for small and large disorder. The sym-
bols are results from simulations, the dashed line is a fit, and the full
line is based on an analytic result for the diffusion constant �see Eq.
�24��. The channel width is d=0.1.
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perfect paths in the following, in the sense that the particles
move, on average, in one direction although they experience
numerous reflections in the channels. Examples of such tra-
jectories are illustrated in Fig. 2; path 3 is equivalent to the
“propagating periodic orbit” in the work of Sanders and Lar-
ralde �see Fig. 1�c� and Ref. �11��. In the framework of Lévy
walks, they can be considered as steps of infinite length and
therefore are responsible for the superdiffusive behavior. We
will investigate them in more detail in Sec. IV. For small
disorder ��r=10−6, star symbols�, the mean-square displace-
ment exhibits a transient superdiffusive regime for small
times with the same exponent �=1.72 as in the regular case
and then enters conventional diffusion ��=1� for large times.
Finally, for large disorder ��r=0.3, circle symbols�, the mo-
tion is purely diffusive.

Figure 4�a� shows clearly that the superdiffusive motion
in the honeycomb billiard is associated with a nonisotropic
probability distribution P�r , t� of the particles. The spikes in
P�r , t�, plotted for t=105, suggest that the long effective
steps, responsible for superdiffusion, occur along the six
equivalent directions of the channels. Within the theory of
continuous-time random walks, we can show that such a
spiky shape of the distribution has to appear. However, in the
regime of conventional diffusion ��r=0.3�, the distribution
P�r , t� assumes the expected isotropic shape of the Gaussian
distribution, as illustrated in Fig. 4�b�.

We investigated if the probability distribution P�r , t�
obeys the scaling law

P�r,t� =
1

t� P� r

t�/2 ,1� . �1�

If it is valid, the moments of P�r , t� satisfy

�	r�t�	q� = t��q��	r�1�	q� with ��q� = �q/2, �2�

as one can show in a straightforward manner. We determined
the exponents ��q� from a double-logarithmic plot of
�	r�t�	q� / �	r�1�	q� versus time t. Figure 5 plots ��q� as a func-
tion of q for the honeycomb billiard for a channel width
d=1. Since the single points follow a nearly straight line, the
scaling law of Eq. �1� is roughly satisfied. A closer inspec-
tion, however, reveals that the regions for q�2 and q�2 are
better fitted by different slopes � /2=1.68/2 and 1.9/2, re-
spectively. So the exponent �=1.72 determined from the

mean-square displacement lies between these two values. In-
terestingly, such a small difference of the slopes was also
found by Sanders and Larralde in Ref. �11� for their “parallel
zigzag billiard” with the kink at q=3. On the other hand, in
the infinite horizon billiards with �r2�� t ln tstudied by Arm-
stead et al. �27�, the same analysis also reveals a kink at q
=2 but with a larger difference of the slopes � /2=0.5 for q
�2 and � /2=1 for q�2, respectively. Castiglione et al. �32�
termed the transport in systems with such a nonlinear mo-
mentum analysis strongly anomalously diffusive. Note that
in all examples given in �11,27,32� the slope for the higher
momenta always is 1, which is different from the slope of
1.9/2 in the honeycomb billiard. Finally, we note that for
random channel billiards ��q�=q /2 confirming the expected
Gaussian distribution.

In Fig. 6 we plot �r2� versus time for different strengths of
disorder. At small times, there is always superdiffusional be-
havior with the same time exponent. Both the crossover time
to conventional diffusion and the diffusion constant D in-
crease with decreasing �r. Especially, we find that D di-
verges for �r→0.

FIG. 4. Particle distribution for
t=105 for �a� the honeycomb bil-
liard and �b� the random channel
billiard with �r=0.3. The channel
width is d=0.1.

FIG. 5. Time exponent ��q� for the qth moment of the particle
distribution function plotted versus q. The symbols are results from
simulations for the exact honeycomb billiard with channel width
d=1. The fitted dashed lines have slopes 1.68/2 and 1.9/2.
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IV. SUPERDIFFUSION: AN ANALYTIC APPROACH

A. Exact honeycomb billiard

In Fig. 7 we plot randomly chosen particle trajectories
from our simulations. They demonstrate that particles move,
on average, in one direction for a very long time before they
change their course. Moreover, long steps along one of the
six possible channel directions are in the majority. These
long steps occur due to the existence of ballistic trajectories
or perfect paths, as we call them, where particles follow for-
ever a certain direction. Examples were already introduced in
Fig. 2. The main contribution to superdiffusion comes from
paths that are close to perfect, i.e., paths whose initial con-
ditions differ slightly from a perfect one. Almost perfect and
perfect trajectories then take the same channels for a long

time until the difference between them is so large that they
enter different channels. Therefore, an almost perfect path
follows the direction of a ballistic trajectory for a long time
before changing its direction. In the following, we consider
the straight sections of an almost perfect path as an effective
step in a Lévy walk and use the formalism of a continous-
time random walk to determine the mean-square displace-
ment and the particle distribution function on the basis of a
distribution for these effective steps �23�. Since in our case,
the long steps are restricted to special directions, the expo-
nent in the mean-square displacement is equivalent to the
one found in Ref. �21� for pure one-dimensional rather than
two-dimensional systems, as we will demonstrate explicitely
below.

In a periodic Lorentz gas with infinite horizons the situa-
tion is similar. The main contribution to superdiffusion is due
to paths close to the straight ballistic trajectories depicted in
Fig. 1�a�. An effective step in the Lorentz gas ends when a
particle whose initial conditions differ from the ones of a
ballistic path hits a scatterer. For both the Lorentz gas and
the hexagonal billard, let us denote by � the difference in the
starting angle of a perfect and an almost perfect path. Par-
ticles starting at the same point will accumulate a difference
�x in position that in leading order grows as t�, where t is the
travel time of the particles. An effective step ends if �x ex-
ceeds some treshold �xmax proportional to the distance of
scatterers in the Lorentz gas or to the channel width d in the
honeycomb billard. In both systems, the duration t of an
effective step is therefore proportional to 1/� for sufficiently
small �. For the Lorentz gas this relation follows from the
work in Ref. �9�; for the honeycomb billiard we explicitely
justify it for a special class of perfect paths in the Appendix.

Let p���d� be the probability of finding a particle close to
a perfect path with a starting angle in the interval �	+� ,	
+�+d��, where 	 is the starting angle of the perfect path.
With t�1/�, one finds the distribution function 
�t� of the
effective step times:

FIG. 6. Mean-square displacement as a function of time t for
different strengths �r of disorder illustrating the transient regime of
superdiffusion. The full and dashed lines indicate the limiting cases
of conventional diffusion and pure superdiffusion. The symbols are
results from simulations, the channel width d is 0.1. The inset
shows the mean-square displacement calculated with the step-time
distribution of Eq. �18� for different tdis.

FIG. 7. Simulated paths of par-
ticles started with random condi-
tions in a perfect honeycomb lat-
tice. Lengths are given in units of
the edge length l0 of a hexagon. It
is obvious that some particles fol-
low straight paths along the six
lattice axis for very long times be-
fore they change direction. Note
that in this random selection of
paths no path is close to path 3 of
Fig. 2. It seems that perfect paths
not running along the lattice axes
are very rare.
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�t�dt = p���d� �
p�1/t�

t2 dt . �3�

In a Lorentz gas p����sin �, i.e., the velocity component
cos � perpendicular to the direction of the infinite horizon is
equally distributed �9�. Therefore, 
�t��1/ t3 in the long-time
limit that leads to a mean-square displacement �r2� propor-
tional to t ln t �9,23� characterizing a marginally anomalous
diffusion.

In our simulations of the particle transport in the honey-
comb billard, we choose all starting angles with the same
probability. A constant angular distribution p��� leads to

�t��1/ t2 and therefore �r2�� t2 / ln t �23�. However, in the
simulations we find �r2�� t1.72. We suspect that during the
evolution of the photon cloud the angles close to perfect
paths are no longer equally distributed, as also observed in
the periodic Lorentz gas. In the following, we therefore con-
sider an angular distribution p������ with an exponent �
between 0 and 1 in Eq. �3�. To obtain a normalizable step-
time distribution 
�t�, we use a small cutoff at a time � and
arrive at


�t� �
1

t2+��t − �� , �4�

where the step function �t−�� is one for t�� and zero for
t��. In the formalism of continuous-time random walks, the
important quantity is the probability ��r , t� that the particle
performs a step along r in time t. It is written as ��r , t�
= p�r 	 t�
�t�, where p�r 	 t� denotes the conditional probability
to move along r in time t. As suggested by Fig. 7, we assume
that the particles move with an effective velocity v along the
six possible channel directions given by the unit vectors
e j = �cos �j /3 , sin �j /3�. So the conditional probability be-
comes

p�r	t� =
1

6

j=1

6

��r − vte j� . �5�

We now calculate the particle distribution function P�r , t�
and the mean-square displacement using the “velocity
model” for Lévy walks introduced in �23�. Within the for-
malism of continuous-time random walks, the particle distri-
bution function, i.e., the probability to find a particle at lo-
cation r and time t, is given by the integral equation

P�r,t� =� d2r��
0

t

dt�P�r�,t����r − r�,t − t�� + R�r,t� ,

�6�

where R�r , t� is the probability to reach or pass the point r at
time t within one step:

R�r,t� = p�r	t��
t

�

dt�
�t�� . �7�

Performing a Fourier transformation in space and a Laplace
transformation in time, Eq. �6� can be solved:

P̄�k,u� =
R̄�k,u�

1 − �̄�k,u�
. �8�

Here the overbar indicates a function in Fourier-Laplace
space. Using ��r , t�= p�r 	 t�
�t� together with the respective
definitions �5� and �7� for p�r 	 t� and R�r , t�, we find

P̄�k,u� =



j=1

6

�1 − 
̄�u − ivk · e j��/�u − ivk · e j�



j=1

6

�1 − 
̄�u − ivk · e j��

. �9�

The Laplace transform of the step-time distribution �4� can
be expanded for small u:


̄�u� � 1 + au1+� − bu , �10�

where a=��−1−�� and b= �1+��� /� are positive constants
and ��x� denotes the Gamma function. Note that the normal-

ization 0
�
�t�dt=1 is satisfied by 
̄�0�=1. Then, for small u

and k, Eq. �9� becomes

P̄�k,u� =



j=1

6

�− a�u − ivk · e j�� + b�



j=1

6

�− a�u − ivk · e j�1+� + bu�

. �11�

In the denominator, the linear term in k has vanished because

 j=0

6 k ·e j =0.
The Laplace transform of the mean-square displacement

can be calculated with the help of P̄�k ,u�:

�r2̄�u�� = − �k
2P̄�k,u�	k=0. �12�

We are therefore taking a closer look at Eq. �11� in the limit
k /u→0. We expand �u− ivk ·e j�� and �u− ivk ·e j�1+� in terms
of k /u and finally obtain

P̄�k,u� �
1

u
−

1

2

a

b
�v2k2u�−3. �13�

Using this approximate form in Eq. �12� and calculating the
inverse Laplace transform, we find the mean-square displace-
ment in the long-time limit:

�r2�t�� � t2−�. �14�

In the region 0���1, to which our calculations apply, the
time exponent �=2−� varies between 1 and 2 so that we are
in the superdiffusive but subballistic regime. As already
mentioned above, the relation between the exponents in the
step-time distribution 
�t� and the mean-square displacement
is the same as the one found in Refs. �21–23� for one-
dimensional systems. The exponent �=1.72, which we
observe in our simulations, is achieved with an exponent
�=0.28 in the angular distribution p������. Our numerical
results can therefore be explained with the assumption that
close to perfect paths the density of possible particle paths
sharply drops to zero.
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Figure 8 shows P̄�k ,u� as given in Eq. �11� for u=10−3,
v=1, and �=0.28. One clearly sees a sixfold symmetry that
through the inverse Fourier-Laplace transformation is also
visible in P�r , t�. To analyze this starlike distribution pattern

further, we investigate P̄�k ,u� in the limit u /k→0. Expand-
ing Eq. �11� in u /k and employing polar coordinates,
k= �k cos �k ,k sin �k�, we obtain

P̄�k,u� �
1

u
+

a

b
v1+�k1+�

u2 ���k� , �15�

where ���k� is a function that only depends on the angular
variable:

���k� =
1

6

j=1

6 �i cos��k −
�

3
j��1+�

. �16�

Due to the sixfold symmery, ���k� is a real function and can
also be written as

���k� = −
1

3
sin��

�

2
�


l=1

3 �cos��k −
�

3
l��1+�

. �17�

We plot ���k� in Fig. 9 for �=0.28. It has minima at �k

= j� /3 �j=1, . . . ,6�, indicating that along these directions

the width of P̄�k ,u� is smaller compared to other directions,
as is also visible in Fig. 8. Therefore, in real space the width
of the particle distribution will be largest along the corre-
sponding six channel directions. This explains the nonisotro-
pic distribution pattern we find in our simulations �see Fig.
4�a��. So the starlike structure is indeed a result of the fact
that effective long steps occur only along special directions.

B. Random channel billiard

In a disordered channel system, perfect paths do not exist.
However, for small disorder, there are particle trajectories
that pass the same channels as a perfect path until they ulti-

mately take another route. This behavior is similar to the
almost perfect paths in the honeycomb billiard. Small disor-
der therefore cuts off very long steps. To take this effect into
account, we introduce an exponential factor in the step-time
distribution:


dis�t� � e−t/tdis
�t� �
e−t/tdis

t2+� �t − �� , �18�

where tdis is a time that decreases with increasing disorder
�r. Paths with effective step times beyond tdis are consider-
ably reduced in number. To arrive at the correct limit of the
ordered honeycomb billiard, tdis→� for �r→0. On the other
hand, our description based on the step-time distribution �18�
breaks down, when tdis approaches 1, i.e., the time a particle
needs to pass one channel. Diffusion in such strongly disor-
dered channel billiards can be modeled by assuming that, on
average, the particle’s paths in different channels are uncor-
related, as we will explain below in detail.

The new step-time distribution �18� has finite first and
second moments. Therefore, the mean-square displacement
in a disordered channel system is linear in time in the long-
time limit, i.e., the particles behave diffusively. For smaller
times, superdiffusion occurs depending on the value of tdis,
as illustrated by the inset of Fig. 6. At a time of the order of
tdis, a transition to the diffusive regime occurs. This is in
aggreement with the results from our simulations. For de-
creasing disorder, the crossover time tdis becomes larger and
so does the time range where superdiffusion is found. Ulti-
mately, in the limit �r→0 the time tdis diverges and super-
diffusion persists in the long-time limit.

At sufficiently strong disorder in the random channel bil-
liards, the particle’s paths in different channels are not cor-
related on average. Then we can consider a random walker
that performs steps along the edges of the Voronoi tessela-
tion. On average, the step length is equal to the edge length
of the unperturbed honeycomb lattice, i.e., 1 in our scaling
�31�. Furthermore, after each step the random walker
changes its direction with the same probability 1 /2 either to

FIG. 8. Fourier-Laplace transform of the particle distribution

function P̄�k ,u� as given by Eq. �9� for u=10−3, v=1, and
�=0.28.

FIG. 9. Angular part ���k� of the particle distribution function
in Fourier-Laplace space in the limit u /k→0 for �=0.28 �see Eq.
�16��.
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the right or to the left by an angle that, on average, assumes
a value of � /3. This enables us to calculate the mean-square
displacement:

�r2� =�

i,j=1

n

ri · r j� = n + 2

i=1

n



j=1

i−1

�ri · r j� , �19�

where the vector ri characterizes a single step with 	ri 	 =1. It
is straightforward to show that �ri�=r j /2i−j for i� j and we
can set �ri ·r j�=r j ·r j /2i−j =1/2i−j. The mean-square displace-
ment is then calculated using the formula for geometric
sums:

�r2� = n + 2

i=1

n



j=1

i−1
1

2i−j = 3n − 4 +
4

2n . �20�

In the limit of n→� this becomes

�r2� = 3n . �21�

To arrive at the mean-square displacement in terms of
time t, we have to relate the number n of steps to t. We first
consider a particle path with a fixed angle 	 relative to the
channel direction. For small channel widths d so that details
at the channel junctions can be neglected, the time T�	� to
pass the channel is

T�	� =
1

cos�	�
. �22�

The step number n is then given by the average over all
possible angles 	:

n =
2

�
�

0

�/2 t

T�	�
d	 =

2

�
t . �23�

With Eq. �21� and �r2�=4Dt, we finally arrive at the diffu-
sion constant

D =
3

2�
, �24�

which is an excellent estimate for random channel billiards
as illustrated by the perfect fit of the full line in Fig. 3 to the
simulation results for �r=0.3 and d=0.1. Note that Eq. �24�
does not depend on disorder. As soon as all long-time corre-
lations are destroyed, any further increase of disorder does
not affect the diffusion constant.

V. CONCLUSIONS

With the honeycomb billiard, which can also be viewed as
a system where hexagonal scatterers are placed on a triangu-
lar lattice, we have investigated a periodic extended billiard
in detail. Though particles moving in the honeycomb billiard
always have a finite horizon, there exist perfect paths where
they move ballistically in one direction. We have clarified
that almost perfect paths give rise to an overall superdiffu-
sive behavior. Our simulations reveal a mean square dis-
placement �r2�� t� with a time exponent �=1.72. On the
other hand, in our analytical treatment we have applied the

Lévy walk model based on the formalism of continuous-time
random walks by considering the long straight parts of al-
most perfect paths as effective steps. Assuming for their oc-
currence a general distribution of the form p������, we can
show that the mean-square displacement possesses a time
exponent �=2−�. A comparison with the simulation results
then gives �=0.28 which means that almost perfect paths are
less probable than other trajectories.

In contrast to previous treatments of Lévy walks, the di-
rectional distribution of steps in our model is not isotropic.
Instead, steps are limited to the six possible channel direc-
tions, which are used by most of the perfect paths as sug-
gested by our simulations. We therefore find that the time
exponent of the mean-square displacement corresponds to
the one determined for one-dimensional systems �21–23�.
Furthermore, our analysis reveals a starlike distribution of
the particles’ positions with a sixfold symmetry in accor-
dance with our simulation results. So a limitation of the al-
lowed step directions together with a step-time distribution
that causes superdiffusion ultimately gives rise to an aniso-
tropic particle distribution.

We have also introduced disorder into the honeycomb bil-
liard so that the directions of the channels are randomized. In
the limit of long times, these random channel billiards al-
ways display diffusive behavior. Transient superdiffusion is,
however, visible in systems with weak disorder for small
times. We explain it with the help of an exponential cutoff in
the step-time distribution. For large disorder, correlations
along the particle path between successive channels are lost
on average. With the help of an elementary random walk
model on a honeycomb lattice, we can estimate the diffusion
constant which fits our simulation results very well.

Our investigation shows that the transport of particles in
two-dimensional channel systems governed by the rule of
specular reflection adds further insight to the current knowl-
edge of extended billiards. Since we were motivated to the
present study by light transport in foams, as mentioned in the
introduction, the interesting question arises how the superdif-

FIG. 10. The position of the particle within the ith channel is
given by the distance 	xi,f	 or 	xi,l	 between vertices of the underly-
ing honeycomb structure �dotted lines� and the first or last intersec-
tion of the particle’s path with the center line of the channel. The
sign of xi,l and xi,f is negative if the intersection is to the left of the
vertices; otherwise it is positive. The angle of the particle’s path
with the center line is denoted 	i. It is always taken positive and
never changes within a channel. For 	i�� /6, the particle proceeds
into the channel i+1 situated either opposite �case a� or next �case
b� to the last reflection in channel i.

SUPERDIFFUSION IN A HONEYCOMB BILLIARD PHYSICAL REVIEW E 73, 031113 �2006�

031113-7



fusion of classical particles in the honeycomb billiard will
affect the analogous problem of interfering waves travelling
along the channels. This question is also crucial for the rela-
tion between classical and quantum mechanics �33�.
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APPENDIX: DISTRIBUTION
OF EFFECTIVE STEP TIMES

In this appendix we calculate the step-time distribution for
our Lévy-walk model in Sec. IV A. In concrete, we will con-
sider paths with effective steps along the main lattice direc-
tions.

For special starting angles 	1, so-called perfect paths exist
where the particles run forever along one of the lattice axes,
as illustrated in Fig. 2. A particle having started at an angle
	1+� will leave such a perfect path after an effective step
time t. Analyzing special perfect paths to be defined below
will allow us to calculate the step-time distribution 
�t�.

We first take a closer look at a general path of a particle
crossing the ith channel. The position and direction of the
particle is characterized by xi,f �or xi,l� and 	i, as defined in
Fig. 10. Depending on the position, a path with an angle 	i
�� /6 proceeds into the new channel i+1 situated either
opposite �case a in Fig. 10� or next �case b� to the last re-
flection in channel i. The new, respective angles therefore are
	i+1=� /3−	i or 	i+1=� /3+	i �see Fig. 11�. However, in
channel i+2 one always finds 	i+2=	i since for 	i+1�� /6
only case a applies.

For reasons to become clear below, we now calculate the
position xi+2,f in channel i+2 as a function of the parameters
	i and xi,f in the ith channel assuming 	i�� /3. We know
already that this is fulfilled in every second channel. First,
we calculate the position xi,l from the position xi,f:

xi,l = xi,f + mid cot 	i − 1, �A1�

where the integer mi is the number of reflections in channel
i. Second, with the law of sines we determine xi+1,f �see
Fig. 10�:

xi+1,f = �
sin 	i

sin 	i+1
xi,last. �A2�

The upper and lower signs belong, respectively, to case a or
b. The relations for channel i+1 equivalent to Eqs. �A1� and
�A2� are

xi+1,l = xi+1,f + mi+1d cot 	i+1 − 1, �A3�

xi+2,f = �
sin 	i+1

sin 	i
xi+1,l, �A4�

where in Eq. �A4� 	i+2=	i was used. Finally, combining all
equations �A1�–�A4�, we obtain

xi+2,f = xi,f − 1

+ mid cot 	i ±
sin��/3 � 	i�

sin 	i
�

cos��3 � 	i�
sin 	i

mi+1d .

�A5�

From the multitude of possible perfect paths, we calculate
the step-time distribution 
�t� for a special class of perfect
paths characterized by the requirement that the position xi,f
in the channel is periodically repeated in every second chan-
nel, i.e., xi+2k,f =xi,f for all k. From Eq. �A5�, this is the case
for

FIG. 11. All possible angles
for a particle with a starting angle
	i�� /6. In every second channel
the starting angle is repeated:
	i+2n=	i.

FIG. 12. Two particles can only enter the same channel if the
distance between the last intersections of their paths with the chan-
nel center line is smaller than �xmax=d / tan 	n.
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mi =
tan 	i

d
and mi+1 =

tan 	i+1

d
, �A6�

where 	i now belongs to this perfect path. Examples are
illustrated in Fig. 2 with paths 1 and 3.

For a particle with starting angle 	i+�, not running on a
perfect path, Eq. �A5� applies as well with 	i replaced by
	i+�. We can therefore calculate the difference in positions
�xi+2=xi+2,f� −xi+2,f in channel i+2 when the difference in
channel i is �xi=xi,f� −xi,f:

�xi+2 = �xi + K	i

sin �

sin�	i + ��
, �A7�

where

K	i
=

�3 − �3 tan 	i

±cos 	i + �3 sin 	i

�A8�

and Eqs. �A6� were used. We now assume that particles on
the perfect path and its neighboring path start at the same
position, i.e., �x1=0. In the long-time limit the different be-
havior in channels i and i+1 is irrelevant so that in the nth
channel the difference in position �xn becomes

�xn � n
sin �

sin�	1 + ��
. �A9�

If �xn exceeds a threshold proportional to �xmax
=d / tan 	1, particles traveling on the perfect path and its
neighbor proceed into different channels �see Fig. 12�.
Therefore the maximum number of channels nmax where they
travel through the same channels is

nmax � �xmax
sin�	1 + ��

sin �
= d�sin 	1 +

tan 	1sin 	1

tan �
� .

�A10�

Since the particles move ballistically and for small �, the
duration of an effective step therefore is

t � nmax �
1

�
. �A11�

The number of particles with starting angles in the intervall
�	1+� ,	1+�+d�� is p���d�, where p��� is the distribution of
starting angles close to a perfect path. Together with Eq.
�A11�, this determines the step-time distribution for t→�:


�t�dt = p���d� �
p�1/t�

t2 dt . �A12�
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